

Towards the hybrid meson photoproduction at JLab: unraveling pion exchange from a Regge theory perspective

Glòria Montaña Faiget

Theory Center, Thomas Jefferson National Accelerator Facility

In collaboration with A. Szczepaniak, V. Mathieu and others

Nuclear Theory Seminar

April 18, 2024

Confined states of quarks and gluons

Mesons and baryons aren't the only states allowed by QCD.

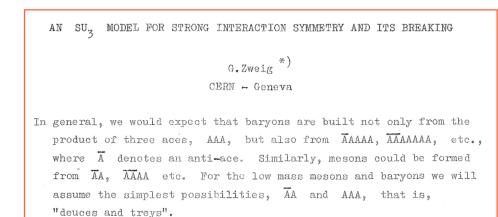
A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

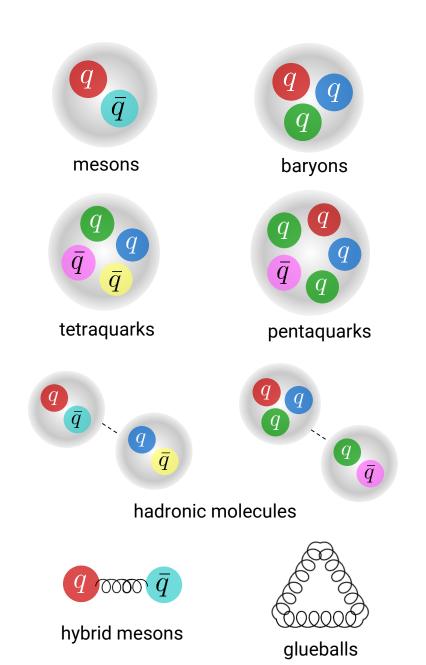
Received 4 January 1964

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. ...

[M.Gell-Mann, Phys.Lett. 8 (1964) 214]



[G.Zweig, CERN-TH-401 (1964)]

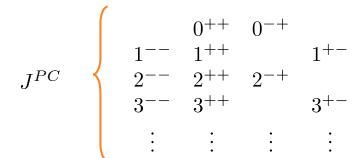


2

Hybrid mesons with exotic quantum numbers

- Mesons are experimentally characterized by quantum numbers:
 - \rightarrow Isospin
 - \rightarrow Total angular momentum $\mathbf{J} = \mathbf{L} + \mathbf{S}$ $(\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2)$
 - \rightarrow Parity $P = -(-1)^L$
 - \rightarrow Charge conjugation $C = (-1)^{L+S}$

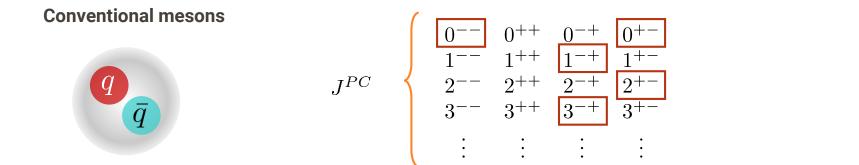
S₁ L

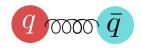


Hybrid mesons with exotic quantum numbers

- Mesons are experimentally characterized by quantum numbers:
 - \rightarrow Isospin
 - \rightarrow Total angular momentum $\mathbf{J} = \mathbf{L} + \mathbf{S}$ $(\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2)$
 - \rightarrow Parity $P = -(-1)^L$
 - \rightarrow Charge conjugation $C = (-1)^{L+S}$

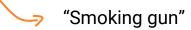
S₁ L S₂





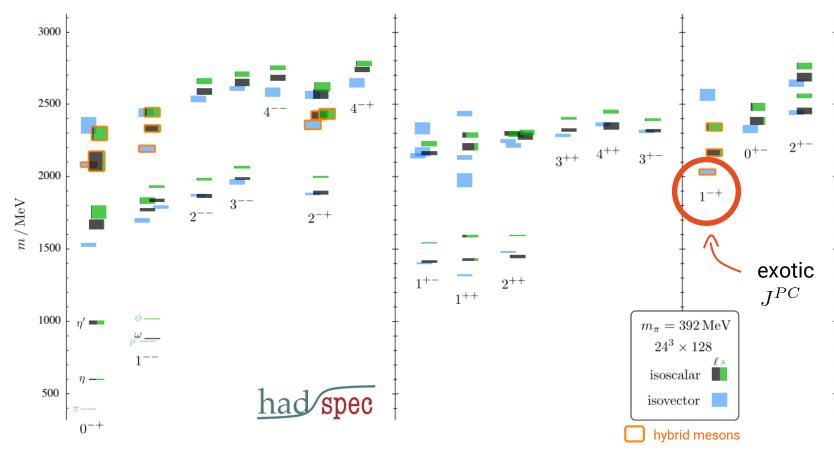
• Gluonic fields in hybrid mesons give rise to states with "exotic" quantum numbers

[C.A.Meyer and Y.Van Haarlem, Phys.Rev.C 82 (2010) 025208]



4

Spectrum of light mesons from lattice QCD



[J.J.Dudek, R.G.Edwards, P.Guo, and C.E.Thomas, *Phys.Rev.D* 88 (2013) 9, 094505]

πππ

 Γ_3

 Γ_4

 Γ_5

 Γ_6

 Γ_7

 $\rho^0\pi^-$

 $b_1(1235)\pi$

 $\eta'(958)\pi^{-}$

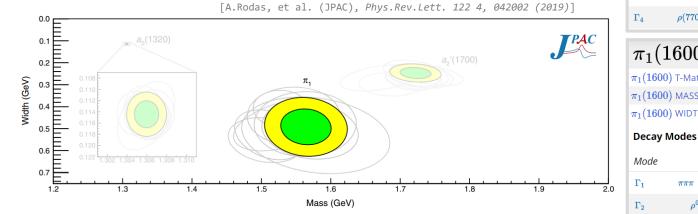
 $f_1(1285)\pi$

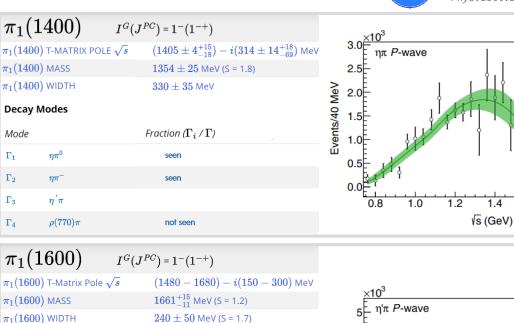
 $\eta\pi$

 $f_2(1270)\pi^{-1}$

Search for exotic hybrid mesons

- Best evidence for a hybrid meson is for π_1 in pion-production ٠ at COMPASS.
- Two 1⁻⁺ isovector states in the PDG.
- Coupled channel analyses favor existence of only one broad ٠ π_1 state consistent with $\pi_1(1600)$ in the 1400–1600 MeV region.





seen

seen

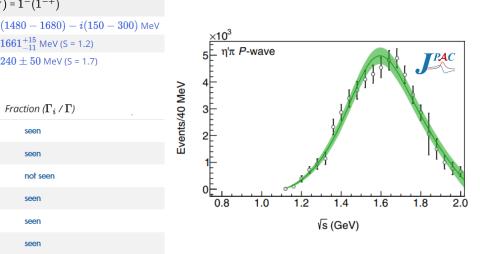
seen

seen

seen

seen

not seen



C.Adolph et al., Phys.Lett.B 740, 303 (2015)

1.4

JPAC

1.8

1.6

2.0

 $\pi_1(1400)$

 $\pi_1(1400)$ MASS

 $\pi_1(1400)$ WIDTH

Mode

 Γ_1

 Γ_2

 Γ_3

 Γ_4

 Γ_5

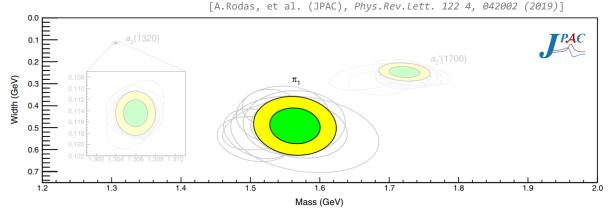
 Γ_6

 Γ_7

 $\pi_1(1400)$ T-MATRIX POLE \sqrt{s}

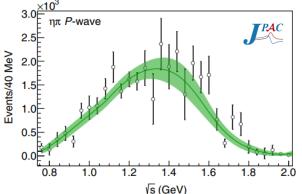
Search for exotic hybrid mesons

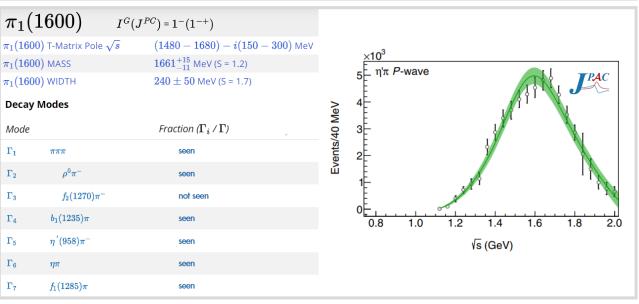
- Best evidence for a hybrid meson is for π_1 in pion-production ٠ at COMPASS.
- Two 1⁻⁺ isovector states in the PDG.
- Coupled channel analyses favor existence of only one broad ٠ π_1 state consistent with $\pi_1(1600)$ in the 1400–1600 MeV region.



- Recent evidence for η_1 and η'_1 from BES-III. ٠ [M.Ablikim et al., Phys.Rev.Lett. 129 (2022) 19]
- Need to confirm π_1 and $\eta_1^{(\prime)}$ and establish the light quark hybrid spectrum.

 $I^{G}(J^{PC}) = 1^{-}(1^{-+})$ 3.0⊢^{×10³} $(1405\pm4^{+15}_{-18})-i(314\pm14^{+18}_{-69})$ MeV 1354 ± 25 MeV (S = 1.8) 2.5 $330\pm35~{
m MeV}$

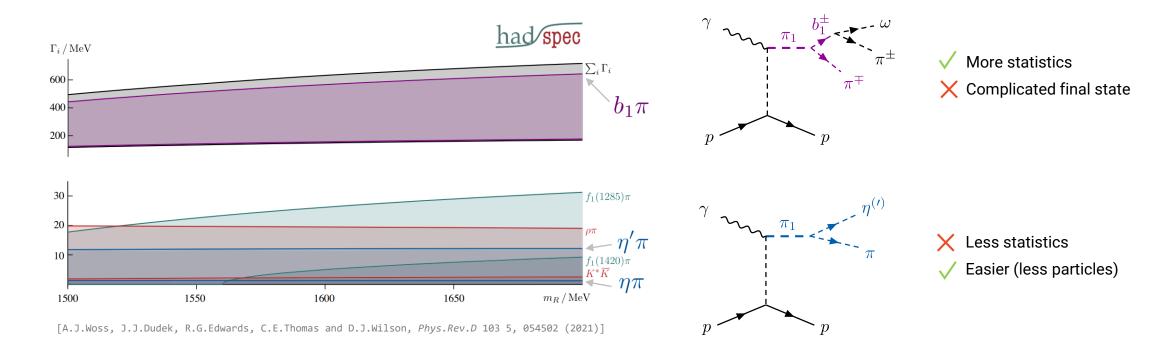




Data: C.Adolph et al., Phys.Lett.B 740, 303 (2015)

Search for exotic hybrid mesons in photoproduction at JLab

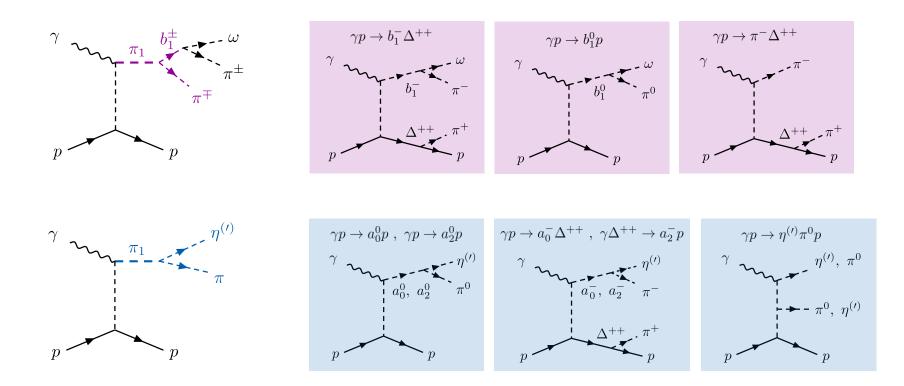
- Identifying the spectrum of hybrid mesons in photoproduction is the primary purpose of the Guilton experiment.
- Exotic hybrid cross-sections ($S_{q\bar{q}} = 1$) expected to be enhanced with photon beam.
- Experimentally challenging: production + decay.
- Lattice QCD calculations suggest $b_1\pi$ is the dominant decay channel of $\pi_1(1600)$.



7

Search for exotic hybrid mesons in photoproduction at JLab

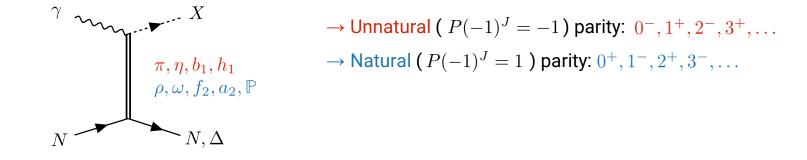
- Amplitude analyses of multi-meson final states require models for production amplitudes of several processes.
- Collaboration between experimentalists and theorists.

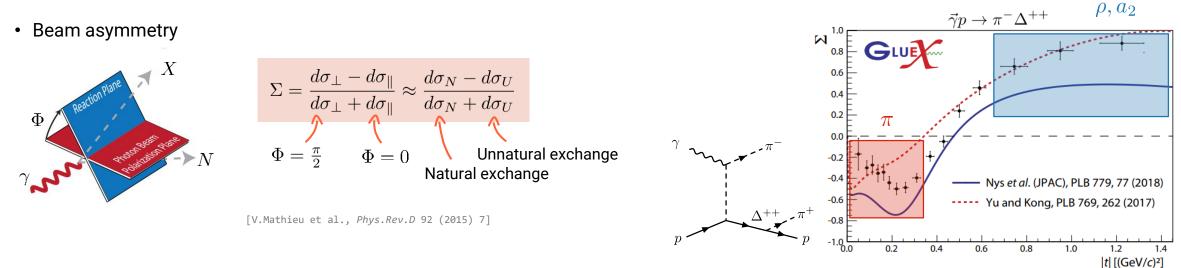


• Begin by understanding non-exotic *J*^{PC} production mechanism.

Polarized photoproduction at high energies

- At high energies, single meson photoproduction dominated by exchange of Regge trajectories in the t-channel.
- Linear photon beam polarization used to filter out the "naturality" of exchanged particle.

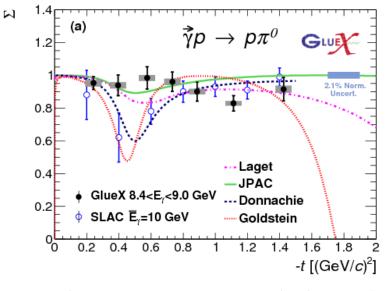




[[]GlueX Collaboration, Phys.Rev.C 103 (2021) 2, L022201]

Production mechanism

- Neutral exchange reactions:
 - Natural parity exchanges dominate



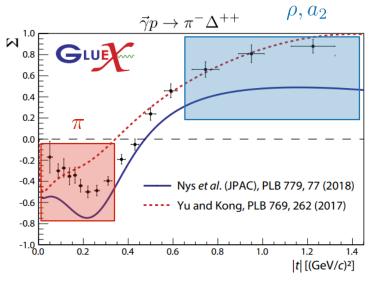
[GlueX Collaboration, Phys.Rev.C 95 (2017) 4, 042201]

• Crucial in the light (e.g. hybrid meson searches) and heavy (e.g. XYZ phenomenology) sectors.

- Charge exchange reactions:
 - Small -t: unnatural exchanges favored

9

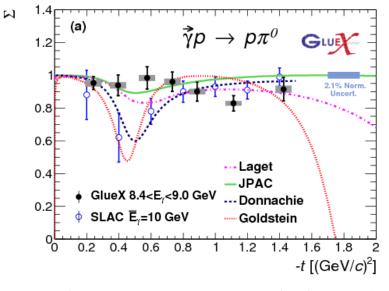
- Large -t: natural exchanges favored



[GlueX Collaboration, Phys.Rev.C 103 (2021) 2, L022201]

Production mechanism

- Neutral exchange reactions:
 - Natural parity exchanges dominate

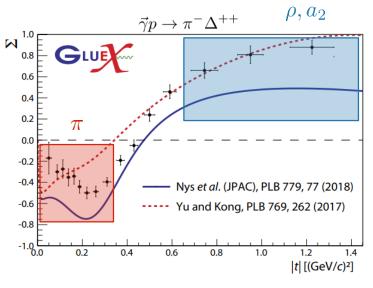


[GlueX Collaboration, Phys.Rev.C 95 (2017) 4, 042201]

• Crucial in the light (e.g. hybrid meson searches) and heavy (e.g. XYZ phenomenology) sectors.

Charge exchange reactions:

- Small -t: unnatural exchanges favored
- Large -t: natural exchanges favored



[GlueX Collaboration, Phys.Rev.C 103 (2021) 2, L022201]

- Motivation
- Remarks on Scattering and Regge Theory
- Pion exchange in pion photoproduction
 - Role of gauge invariance
 - Reggeization
- Other photoproduction reactions
 - $\eta^{(\prime)}\pi$
 - $b_1(1235)$
 - Δ⁺⁺(1232)
- Conclusions

Principles of Scattering Theory

Unitarity $SS^{\dagger} = 1$

if S = 1 + iA then $-i(A - A^{\dagger}) = 2 \text{Im} A = A A^{\dagger}$

Analyticity

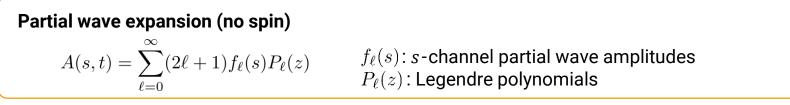
A(s) has singularities (poles and branch cuts) in the complex s plane.

Crossing symmetry $A_{ab\rightarrow cd}(s,t,u) = A_{a\bar{c}\rightarrow\bar{b}d}(t,s,u)$

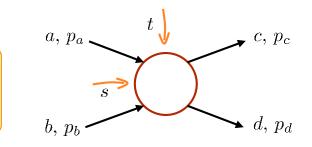
Physical regions (in the case of equal mass particles):

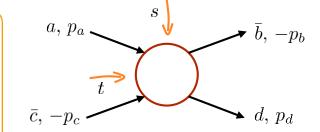
s-channel: $a+b \rightarrow c+d$ $s \ge 4m^2, t \le 0, u \le 0$

t-channel: $a + \bar{c} \rightarrow \bar{b} + d$ $t \ge 4m^2, s \le 0, u \le 0$



Glòria Montaña - Towards the hybrid meson photoproduction at JLab: unraveling pion exchange from a Regge theory perspective



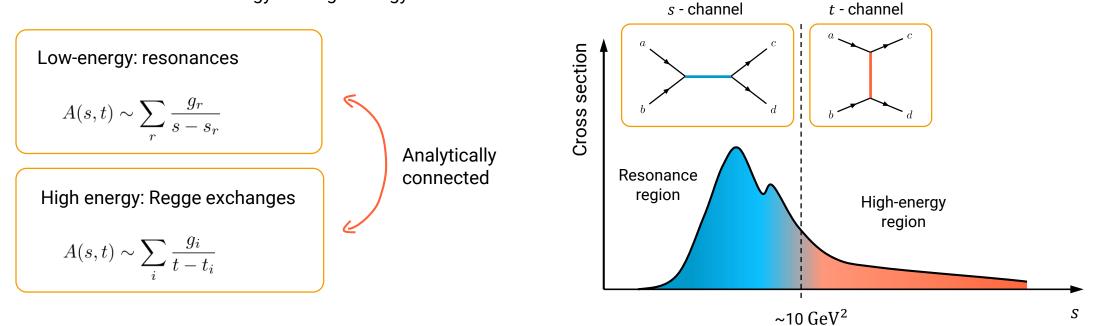


12

Duality

[Dolen, Horn, Schmid (1968), Veneziano (1968)]

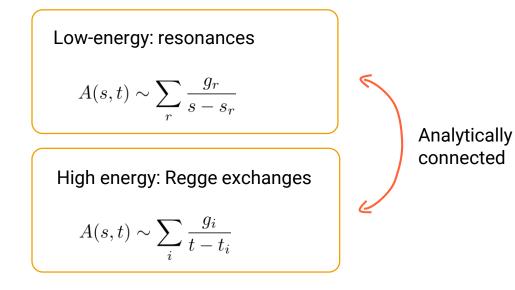
- Property of scattering amplitude.
- Connection between low-energy and high-energy domains.

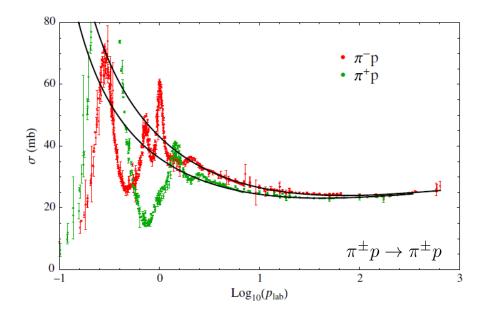


Duality

[Dolen, Horn, Schmid (1968), Veneziano (1968)]

- Property of scattering amplitude.
- Connection between low-energy and high-energy domains.





[V.Mathieu et al., *Phys.Rev.D* 92 (2015) 7]

13

Regge Theory

• At high energies, the scattering amplitudes in the physical region of the *s*-channel are related to particle exchanges in the *t*-channel.

$$A(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}(t) P_{\ell}(z_t)$$

$$t \text{-channel partial wave amplitudes}$$

$$z_t = \cos \theta_t = 1 + \frac{2s}{t-4m^2}$$

$$\lim_{z \to \infty} P_{\ell}(z) \sim z^{\ell}$$

13

Regge Theory

• At high energies, the scattering amplitudes in the physical region of the *s*-channel are related to particle exchanges in the *t*-channel.

• The concept of partial wave can be extended to complex values of angular momentum.

$$\{f_{\ell}(t)\} \longrightarrow f(\ell, t) \quad \text{with} \quad f(\ell, t) \to f_{\ell}(t), \ \ell \in \{0, 1, 2, \ldots\}$$

Even and odd angular momenta have to be continued separately.

$$f_{\ell}(t) = \frac{1}{2} \int_{-1}^{+1} dz_{t} P_{\ell}(z_{t}) A(s,t)$$

$$f_{\ell}(t) = \frac{1}{2} \int_{-1}^{\infty} dz_{t} P_{\ell}(z_{t}) A(s,t)$$

$$f_{\ell}(t) = f^{+}(\ell,t)$$
for even ℓ

$$f_{\ell}(t) = \frac{1}{\pi} \int_{z_{0}}^{\infty} dz \left\{ D_{s}(z,t) \pm D_{u}(-z,t) \right\} Q_{\ell}(z)$$

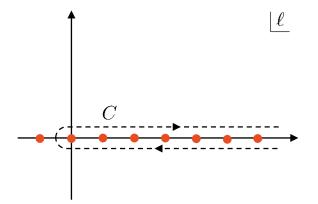
$$f_{\ell}(t) = f^{-}(\ell,t)$$
for odd ℓ

Regge Theory

$$A(s,t) = A^{+}(s,t) + A^{-}(s,t) \quad \text{with} \quad A^{\pm}(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}^{\pm}(t) \frac{1}{2} (P_{\ell}(z_{t}) \pm P_{\ell}(-z_{t}))$$

Procedure: Sommerfeld-Watson transform.

$$A^{\pm}(s,t) = -\frac{1}{2i} \int_{C} \frac{(2\ell+1)f^{\pm}(\ell,t)}{\sin \pi \ell} \frac{1}{2} \left(P_{\ell}(-z_t) \pm P_{\ell}(z_t) \right) d\ell$$



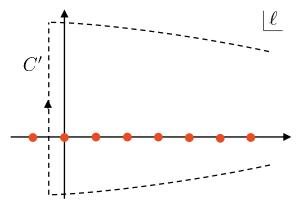
Regge Theory

$$A(s,t) = A^{+}(s,t) + A^{-}(s,t) \quad \text{with} \quad A^{\pm}(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}^{\pm}(t) \frac{1}{2} (P_{\ell}(z_{t}) \pm P_{\ell}(-z_{t}))$$

Procedure: Sommerfeld-Watson transform.

$$A^{\pm}(s,t) = -\frac{1}{2i} \int_C \frac{(2\ell+1)f^{\pm}(\ell,t)}{\sin \pi \ell} \frac{1}{2} \left(P_{\ell}(-z_t) \pm P_{\ell}(z_t) \right) d\ell$$

The next step is to deform the contour.



14

Regge Theory

$$A(s,t) = A^{+}(s,t) + A^{-}(s,t) \quad \text{with} \quad A^{\pm}(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}^{\pm}(t) \frac{1}{2} (P_{\ell}(z_{t}) \pm P_{\ell}(-z_{t}))$$

Procedure: Sommerfeld-Watson transform.

$$A^{\pm}(s,t) = -\frac{1}{2i} \int_{C} \frac{(2\ell+1)f^{\pm}(\ell,t)}{\sin \pi \ell} \frac{1}{2} \left(P_{\ell}(-z_t) \pm P_{\ell}(z_t) \right) d\ell$$

The next step is to deform the contour.

We consider that the only singularities of $f^{\pm}(\ell, t)$ in the region $\ell > -\frac{1}{2}$ are poles in the upper half ℓ plane.

$$A^{\pm}(s,t) = -\frac{1}{2i} \int_{-\frac{1}{2}-i\infty}^{-\frac{1}{2}+i\infty} d\ell \dots -\sum_{i} \underbrace{\frac{\pi(2\alpha_{i}^{\pm}(t)+1)\beta_{i}^{\pm}(t)}{\sin(\pi\alpha_{i}^{\pm}(t))} \frac{1}{2} \left[P_{\alpha_{i}^{\pm}}(-z_{t}) \pm P_{\alpha_{i}^{\pm}}(z_{t}) \right]}_{\text{background} \sim s^{-1/2}}$$
Contribution from each pole $\sim s^{\alpha(t)}$

$$A(s,t) \underset{s \to \infty}{\approx} \sum_{i} \left[\frac{\pi(2\alpha_{i}^{+}(t)+1)\beta_{i}^{+}(t)}{\sin(\pi\alpha_{i}^{+}(t))} \frac{(1+e^{-i\pi\alpha_{i}^{+}(t)})}{2} \left(\frac{s}{s_{0}} \right)^{\alpha_{i}^{+}(t)} - \frac{\pi(2\alpha_{i}^{-}(t)+1)\beta_{i}^{-}(t)}{\sin(\pi\alpha_{i}^{-}(t))} \frac{(1-e^{-i\pi\alpha_{i}^{-}(t)})}{2} \left(\frac{s}{s_{0}} \right)^{\alpha_{i}^{-}(t)} \right]$$

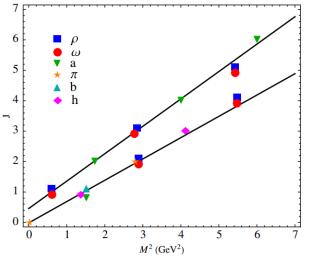
 $C' \qquad \underbrace{\ell}_{\alpha_1(t)} \\ (\textcircled{o})^{\alpha_1(t)} \\ (\textcircled{o})^{\alpha_2(t)} \\ ((\textcircled{o})^{\alpha_2(t)} \\ (((\textcircled{o})^{\alpha_2(t)} \\ (((\textcircled{o})^{\alpha_2(t)} \\ ((((\textcircled{o})^{\alpha_2(t)} \\ ((((()))^{\alpha_2(t)} \\ (($

```
Glòria Montaña - Towards the hybrid meson photoproduction at JLab: unraveling pion exchange from a Regge theory perspective
```

15

Reggeon trajectories

- Families with same quantum numbers but different spin J (even or odd).
- Almost straight lines (Chew-Frautschi plot)
- In standard Regge theory parameterized by: $\alpha(t) = \alpha' t + \alpha_0$



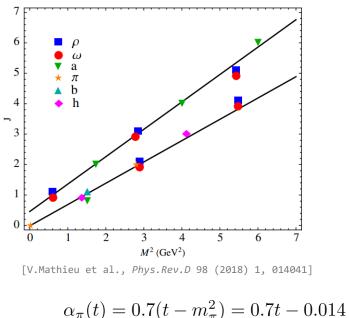
[V.Mathieu et al., Phys.Rev.D 98 (2018) 1, 014041]

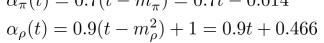
$$\alpha_{\pi}(t) = 0.7(t - m_{\pi}^2) = 0.7t - 0.014$$

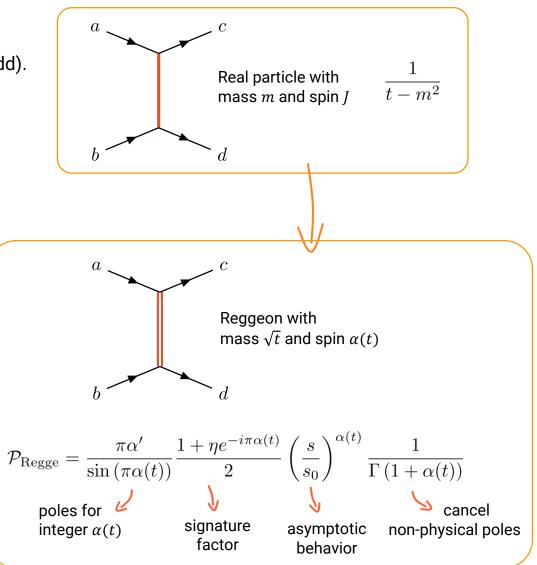
$$\alpha_{\rho}(t) = 0.9(t - m_{\rho}^2) + 1 = 0.9t + 0.466$$

Reggeon trajectories

- Families with same quantum numbers but different spin *J* (even or odd).
- Almost straight lines (Chew-Frautschi plot)
- In standard Regge theory parameterized by: $\alpha(t) = \alpha' t + \alpha_0$



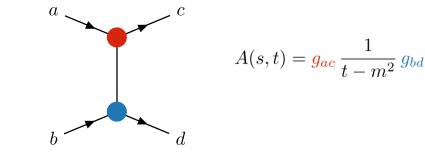


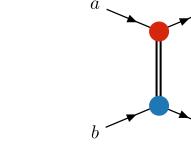


Implications of Regge pole amplitudes

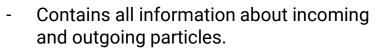
Factorization

Amplitude for particle exchange "factorizes" (follows from unitarity).





The reggeon residue $\beta(t)$:



- Related to the reggeon-hadron interaction vertices.
- Satisfies factorization: $\beta(t) = \beta_{ac}(t)\beta_{bd}(t)$

Power law energy dependence

$$\begin{split} A(s,t) &\sim s^{\alpha(t)} \\ \frac{d\sigma}{dt} &\sim \frac{1}{s^2} |A(s,t)|^2 = s^{2-2\alpha(t)} \end{split}$$

Leading Regge poles (biggest $\alpha(t)$) dominate asymptotically.

Phase

The phase comes from the signature factor: $\frac{1+r}{r}$

$$\frac{\eta e^{-i\pi\alpha(t)}}{2}$$

16

Exchange degeneracy (equal trajectories with opposite signatures) leads to rotating or constant phases.

• Corrections to these hypothesis, usually ~10-20%. [J.Nys et al. (JPAC), Phys.Rev.D 98 (2018) 3, 034020]

Charged pion photoproduction

What do we know?

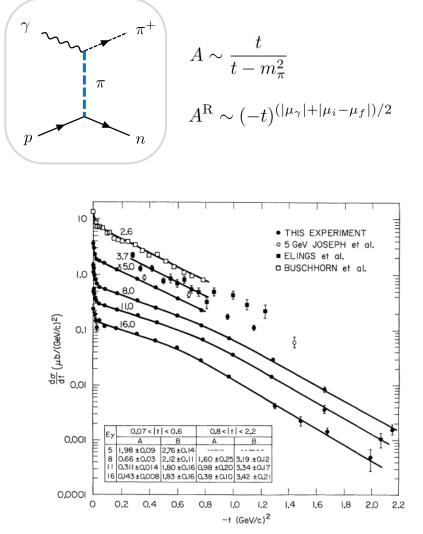
- Pion exchange dominates at small momentum transfer.
- Low energies: Constrained by effective Lagrangians of QCD.
- High energies: Regge theory.

Known issues

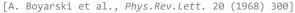
- Cannot describe forward cross-section data in $\gamma p \rightarrow \pi^+ n$ (same for $np \rightarrow pn$).
- What is pion exchange and how does it reggeize?

Proposed solutions

- Existence of parity-doublet conspirator of the pion. [J.S.Ball, W.R. Frazer and M. Jacob, *Phys.Rev.Lett.* 20 (1968) 518]
- Regge cuts and absorption (final state interactions). [F. Henyey, G.L.Kane, J.Pumplin, *Phys.Rev.* 182 (1969) 1579]
- Nucleon Born terms.
 - [L.Jones, Rev.Mod.Phys. 52 (1980) 545]



17



18

PAC

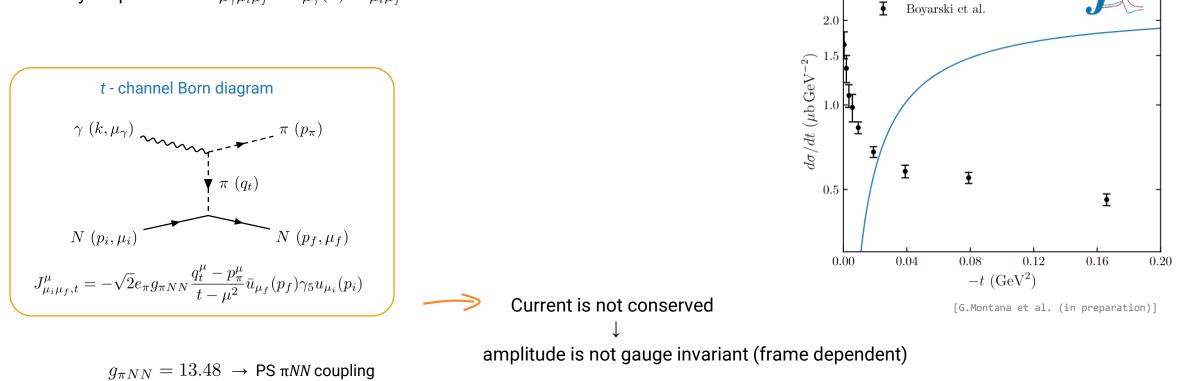
 $\gamma p \to \pi^+ n, \ E_{\gamma} = 8 \ \text{GeV}$

 π exchange (s-channel CM)

2.5

Adding the nucleon Born diagrams

- *s*-channel reaction: $\gamma(k, \mu_{\gamma}) + N(p_i, \mu_i) \rightarrow \pi(p_{\pi}) + N(p_f, \mu_f)$
- Helicity amplitude: $A_{\mu_{\gamma}\mu_{i}\mu_{f}} = \epsilon_{\mu_{\gamma}}(k) \cdot J_{\mu_{i}\mu_{f}}$



• Pion exchange cannot reproduce experimental cross section at small momentum transfer

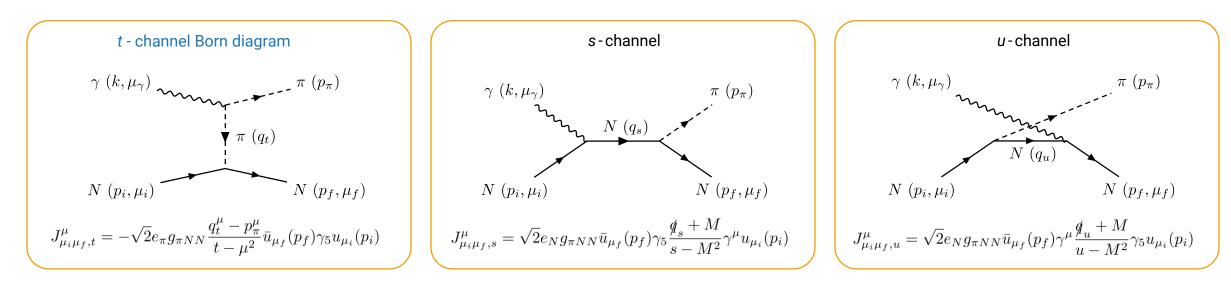
Adding the nucleon Born diagrams

- s-channel reaction: $\gamma(k,\mu_{\gamma}) + N(p_i,\mu_i) \rightarrow \pi(p_{\pi}) + N(p_f,\mu_f)$
- Helicity amplitude: $A_{\mu_{\gamma}\mu_{i}\mu_{f}} = \epsilon_{\mu_{\gamma}}(k) \cdot J_{\mu_{i}\mu_{f}}$

 $J^{\mu}_{\mu_{i}\mu_{f}} = J^{\mu}_{\mu_{i}\mu_{f},t} + J^{\mu}_{\mu_{i}\mu_{f},s} + J^{\mu}_{\mu_{i}\mu_{f},u}$

Total current is conserved

19



• Separate electric and magnetic contributions: $A_{\mu\gamma\mu_i\mu_f} = A^{e}_{\mu\gamma\mu_i\mu_f} + A^{m}_{\mu\gamma\mu_i\mu_f}$ $A^{e}_{\mu\gamma\mu_i\mu_f} = 2\sqrt{2}g_{\pi NN} \left[e_{\pi} \frac{(\epsilon_{\mu\gamma} \cdot p_{\pi})}{t - \mu^2} + e_{N_i} \frac{(\epsilon_{\mu\gamma} \cdot p_i)}{s - M^2} + e_{N_f} \frac{(\epsilon_{\mu\gamma} \cdot p_f)}{u - M^2} \right] \bar{u}_{\mu_f}(p_f)\gamma_5 u_{\mu_i}(p_i)$ $A^{m}_{\mu\gamma\mu_i\mu_f} = \sqrt{2}g_{\pi NN} \left[\frac{e_{N_i}}{s - M^2} + \frac{e_{N_f}}{u - M^2} \right] \bar{u}_{\mu_f}(p_f)\gamma_5 \not{k} \not{\epsilon}_{\mu\gamma} u_{\mu_i}(p_i)$

Electric term

$$A^{\rm e}_{\mu_{\gamma}\mu_{i}\mu_{f}} = 2\sqrt{2}g_{\pi NN} \left[e_{\pi} \frac{(\epsilon_{\mu_{\gamma}} \cdot p_{\pi})}{t - \mu^{2}} + e_{N_{i}} \frac{(\epsilon_{\mu_{\gamma}} \cdot p_{i})}{s - M^{2}} + e_{N_{f}} \frac{(\epsilon_{\mu_{\gamma}} \cdot p_{f})}{u - M^{2}} \right] \bar{u}_{\mu_{f}}(p_{f})\gamma_{5}u_{\mu_{i}}(p_{i})$$

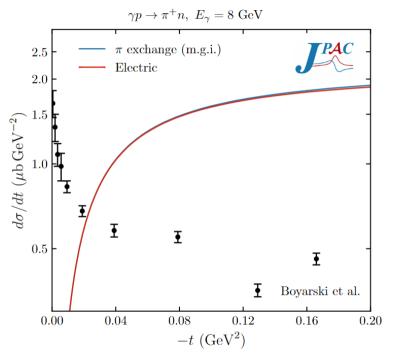
• Using momentum conservation and electric charge conservation ($e_{N_i} = e_{\pi} - e_{N_f}$):

Differential cross section

$$\left(\frac{d\sigma}{dt}\right)_{\pi-\text{m.g.i.}} = 4 \left(\frac{s-M^2}{s-u}\right)^2 \left(\frac{d\sigma}{dt}\right)_{\pi-\text{bare, CM}} \overset{t\to t_{\min}}{\approx} \left(\frac{d\sigma}{dt}\right)_{\pi-\text{bare, CM}}$$

$$\left(\frac{d\sigma}{dt}\right)_{\text{e, }\gamma p\to \pi^+ n} = \left(\frac{d\sigma}{dt}\right)_{\pi-\text{bare, CM}}$$

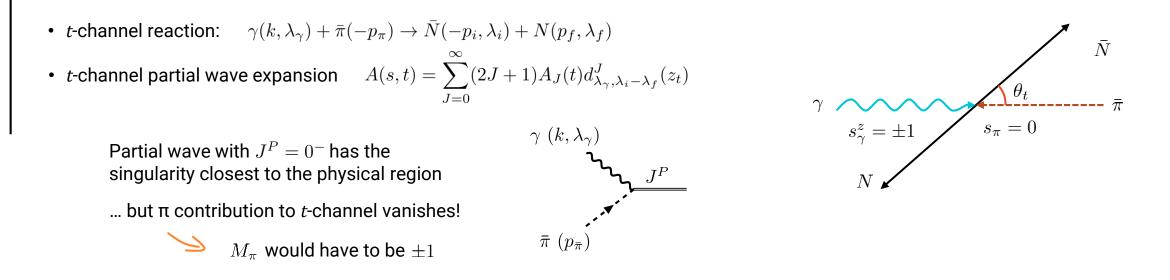
$$\left(\frac{d\sigma}{dt}\right)_{\text{e, }\gamma n\to \pi^- p} = 4 \left(\frac{s-M^2}{M^2-u}\right)^2 \left(\frac{d\sigma}{dt}\right)_{\pi-\text{bare, CM}} \overset{t\to t_{\min}}{\approx} \left(\frac{d\sigma}{dt}\right)_{\pi-\text{bare, CM}}$$



[G.Montana et al. (in preparation)]

21

Pion pole in the *t*-channel: where does it come from?



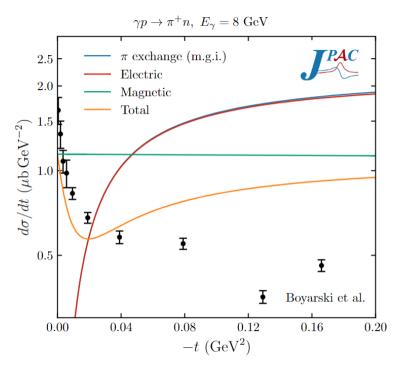
- Crossing symmetry implies (parity conserving) helicity amplitudes in s- and t-channels are related by a rotation.
- The nucleon Born terms contain a "pion pole" that arises from kinematical factors.

$$\begin{aligned} A^{\rm e}_{\lambda_{\gamma}\lambda_{i}\lambda_{f}} &= 2\sqrt{2}g_{\pi NN} \left(e_{\pi} + \frac{1}{2}e_{N_{i}}\frac{t-\mu^{2}}{s-M^{2}} - \frac{1}{2}e_{N_{f}}\frac{t-\mu^{2}}{u-M^{2}} \right) \frac{1}{s-u} (\epsilon_{\lambda_{\gamma}} \cdot (p_{i}+p_{f})) \ \bar{u}_{\lambda_{f}}(p_{f})\gamma_{5}v_{\lambda_{i}}(-p_{i}) \\ &\approx i2g_{\pi NN}\lambda_{\gamma}2\lambda_{i}\delta_{\lambda_{i}\lambda_{f}} \left(e_{\pi} + \frac{1}{2}e_{N_{i}}\frac{t-\mu^{2}}{s-M^{2}} - \frac{1}{2}e_{N_{f}}\frac{t-\mu^{2}}{u-M^{2}} \right) \frac{t}{t-\mu^{2}} \end{aligned}$$

Magnetic term

$$\begin{aligned} A^{\rm m}_{\mu_{\gamma}\mu_{i}\mu_{f}} &= \sqrt{2}g_{\pi NN} \left[\frac{e_{N_{i}}}{s - M^{2}} + \frac{e_{N_{f}}}{u - M^{2}} \right] \bar{u}_{\mu_{f}}(p_{f})\gamma_{5} \not\!\!\! k \not\!\!\! \epsilon_{\mu_{\gamma}} u_{\mu_{i}}(p_{i}) \\ &\approx \mu_{\gamma} 2g_{\pi NN}(e_{N_{i}} - e_{N_{f}}) \delta_{\mu_{\gamma}\mu_{i}} \delta_{-\mu_{i}\mu_{f}} \end{aligned}$$

- At $t \sim 0$ the electric term of the amplitude vanishes.
- The magnetic term has small dependence in t.
- Size of the cross section agrees with the data at $t \sim 0$.
- No need for alternative (unphysical) explanations of the experimental data:
 - Over-absorption
 - Parity doublet conspirator



[G.Montana et al. (in preparation)]

- The exchanged pion is expected to reggeized.
- In the Regge-pole approximation:

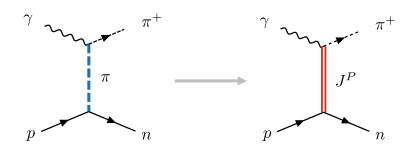
$$\frac{1}{t-\mu^2} \longrightarrow \mathcal{P}_{\pi}^{\text{Regge}} = \frac{\pi \alpha'_{\pi}}{2} \frac{1+e^{-i\pi\alpha_{\pi}(t)}}{\sin\pi\alpha_{\pi}(t)} \left(\frac{s}{s_0}\right)^{\alpha_{\pi}(t)}$$

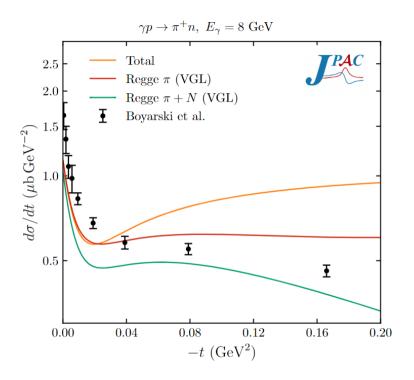
Pion trajectory: $\alpha_{\pi}(t) = \alpha'_{\pi}(t-\mu^2)$ with $\alpha'_{\pi} = 0.7$

• VGL model: reggeize full Born amplitude (π + *N* exchanges, electric and magnetic).

[M.Guidal, J.M.Laget and M. Vanderhaeghen, Nucl. Phys. A 627 (1997) 645-678]

> What does it mean to reggeized the π exchange?



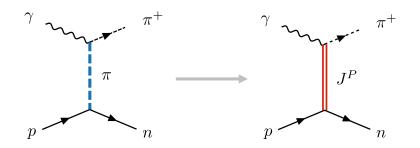


• Rigorous reggeization:

 γ

Explicit exchanges of *t*-channel partial waves in the π trajectory

• Vertices coupling $\gamma \pi$ and $N\bar{N}$ to $J^P = (\text{even})^{-1}$:

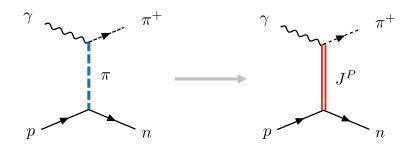


$$\frac{J^{P}}{\pi} \qquad 1^{-} \otimes 0^{-} = 1^{+} \begin{cases} L = 1 \qquad J = 0 \\ L = \{J - 1, J + 1\} \qquad J \ge 2 \end{cases} \quad \text{one } L \text{ vs two } L'\text{s} \\
\frac{\pi}{\pi} \qquad V_{\lambda_{\gamma}}(J) = 2\sqrt{2}e_{\bar{\pi}} \Big[k^{\nu_{1}} \cdots k^{\nu_{J}}\epsilon_{\mu}(k,\lambda_{\gamma})p_{\bar{\pi}}^{\mu} - (k \cdot p_{\bar{\pi}})k^{\nu_{1}} \cdots k^{\nu_{J-1}}\epsilon^{\nu_{J}}(k,\lambda_{\gamma}) \Big] \epsilon_{\nu_{1},\cdots,\nu_{J}}^{*}(M) \quad \xrightarrow{} \quad \text{Gauge invariant by construction}$$

• Rigorous reggeization:

Explicit exchanges of *t*-channel partial waves in the π trajectory

• Vertices coupling $\gamma \pi$ and $N\bar{N}$ to $J^P = (\text{even})^{-1}$:

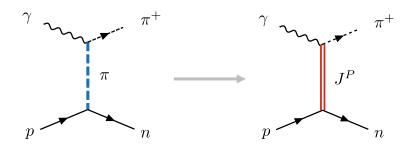


$$\begin{split} & \gamma \\ & \downarrow P \\ \hline \pi \\ & \downarrow P \\ & \downarrow N \\ & \downarrow N$$

• Rigorous reggeization:

Explicit exchanges of *t*-channel partial waves in the π trajectory

• Vertices coupling $\gamma \pi$ and $N\bar{N}$ to $J^P = (\text{even})^{-1}$:



24

• Analytical continuation to J = 0: $\alpha_{\pi}(t) = \alpha'_{\pi}(t - \mu^2)$

$$\frac{g_{\lambda_{\gamma}\lambda_{i}\lambda_{f}}^{J}(t)}{J-\alpha_{\pi}(t)}d_{\lambda_{\gamma}\lambda_{i}-\lambda_{f}}^{J}(\theta_{t})\bigg|_{J=0} \approx i2\frac{g}{\alpha_{\pi}'}\lambda_{\gamma}2\lambda_{i}\delta_{\lambda_{i}\lambda_{f}}e_{\pi}\frac{t}{t-\mu^{2}} \qquad \text{with} \qquad g=\alpha_{\pi}'g_{\pi NN}$$

 \rightarrow Recover m.g.i. π exchange (or electric term)

• Spin summation

(e.g. Sommerfeld-Watson transform, generating function of Jacobi polynomials)

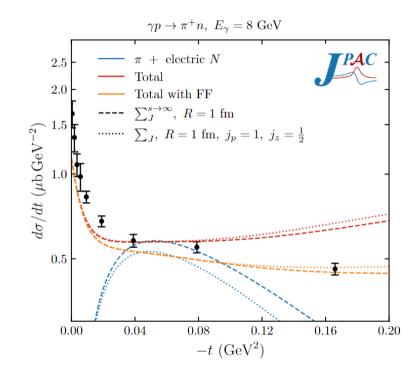
$$A^{R}_{\lambda_{\gamma}\lambda_{i}\lambda_{f}}(s,t) = \sum_{J=0,2,\dots} (2J+1) \frac{g^{J}_{\lambda_{\gamma}\lambda_{i}\lambda_{f}}(t)}{J-\alpha_{\pi}(t)} d^{J}_{\lambda_{\gamma},\lambda_{i}-\lambda_{f}}(\theta_{t})$$

 $g = \alpha'_{\pi} g_{\pi NN} \Lambda_J (r_t r_b)^J$ microscopic \checkmark hadronic radii structure

$$c_J \Lambda_J (r_t r_b)^J \to \frac{j_p}{j_z} \frac{J + j_z}{J + j_p} R^{2J}$$

kinematic factors

• Corrections: add form factor to magnetic term $\beta(t) = \frac{\Lambda}{\Lambda^2 - t}$ with $\Lambda \sim 1 \text{ GeV}$



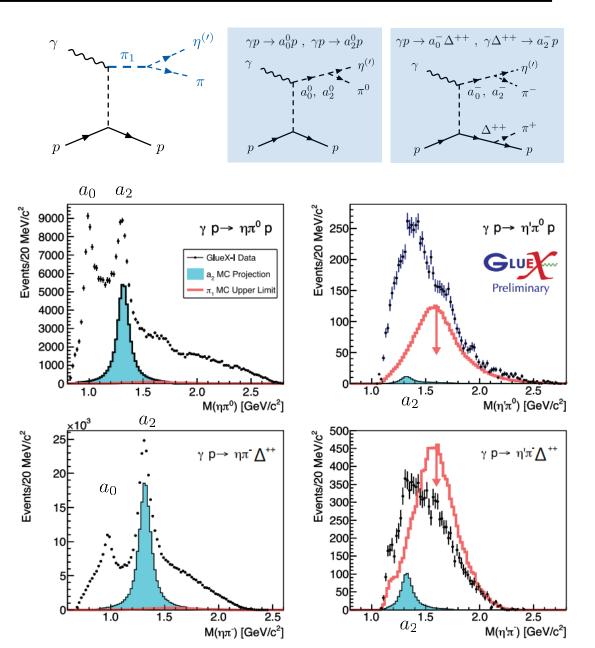
[G.Montana et al. (in preparation)]

Photoproduction of $\eta^{(\prime)}\pi$

• GlueX can access different channels:

 $\gamma p \to \eta^{(')} \pi^0 p$ $\gamma p \to \eta^{(')} \pi^- \Delta^{++}$

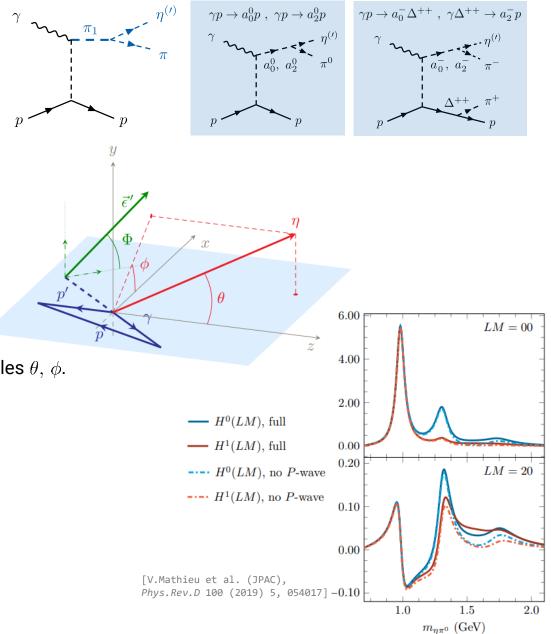
- Small signal of $\pi_1(1600)$ in partial wave with $\ell = 1$ (*P*-wave).
- Clear signals of non-exotic $a_0(980)$ (S-wave) and $a_2(1320)$ (D-wave).



Photoproduction of $\eta^{(\prime)}\pi$

- GlueX can access different channels:
 - $\gamma p \to \eta^{(\prime)} \pi^0 p$ $\gamma p \to \eta^{(\prime)} \pi^- \Delta^{++}$
- Small signal of $\pi_1(1600)$ in partial wave with $\ell = 1$ (*P*-wave).
- Clear signals of non-exotic $a_0(980)$ (S-wave) and $a_2(1320)$ (D-wave).
- Three angles needed to describe the intensity: polarization Φ and decay angles θ , ϕ .
- Observables:
 - Moments of angular distribution:
 - sensitive to exotic signal via interference.
 - Polarization asymmetry
 - Spin-density matrix elements (SDMEs)
 9 independent parameters

$$I(\Omega, \Phi) = \kappa \sum_{\lambda, \lambda', \lambda_1, \lambda_2} A_{\lambda; \lambda_1 \lambda_2}(\Omega) \rho_{\lambda \lambda'}^{\gamma}(\Phi) A_{\lambda'; \lambda_1 \lambda_2}^{*}(\Omega)$$

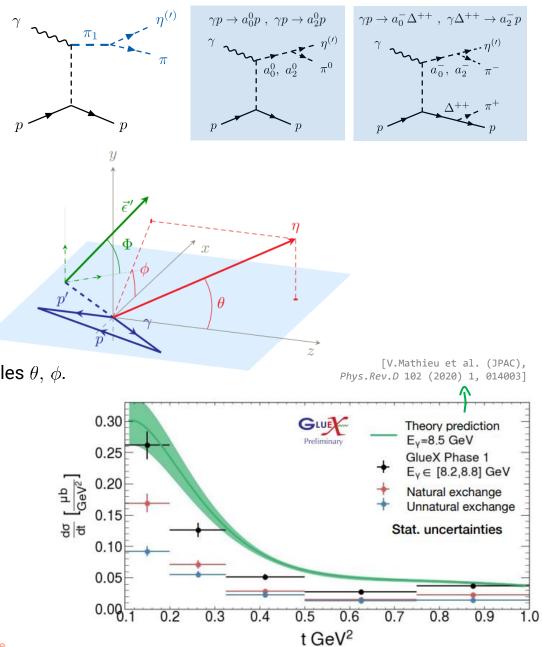


27

Photoproduction of $\eta^{(\prime)}\pi$

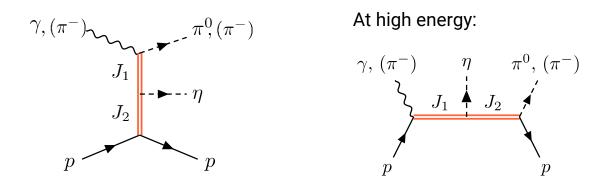
- GlueX can access different channels:
 - $\gamma p \to \eta^{(\prime)} \pi^0 p$ $\gamma p \to \eta^{(\prime)} \pi^- \Delta^{++}$
- Small signal of $\pi_1(1600)$ in partial wave with $\ell = 1$ (*P*-wave).
- Clear signals of non-exotic $a_0(980)$ (S-wave) and $a_2(1320)$ (D-wave).
- Three angles needed to describe the intensity: polarization Φ and decay angles θ , ϕ .
- Observables:
 - Moments of angular distribution:
 - sensitive to exotic signal via interference.
 - Polarization asymmetry
 - Spin-density matrix elements (SDMEs)
 9 independent parameters

$$I(\Omega, \Phi) = \kappa \sum_{\lambda, \lambda', \lambda_1, \lambda_2} A_{\lambda; \lambda_1 \lambda_2}(\Omega) \rho_{\lambda \lambda'}^{\gamma}(\Phi) A_{\lambda'; \lambda_1 \lambda_2}^*(\Omega)$$

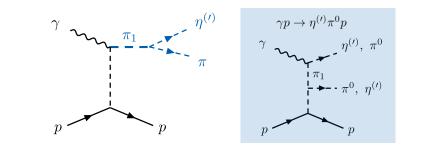


Double Regge contributions

- Contributes to background.
- Models from the 70's (e.g. Venziano, Shimada) can't reproduce high-statistics data at COMPASS and GlueX.
- Need to develop new double-Regge amplitudes consistent with Regge phenomenology.



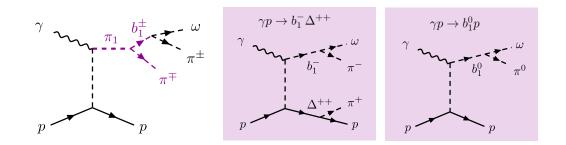
- Need to make the diagrams consistent with each other.
- Use quark string-breaking models to calculate helicity dependence explicitly, and give us insight into the Regge couplings.



Photoproduction of $b_1(1235)$

- Lattice QCD calculations predicts the dominant $\pi_1(1600)$ decay channel be the $b_1\pi(\rightarrow 5\pi)$.
- First step is to understand the b_1 production and decay to $\omega \pi$.
- GlueX can access charged and neutral *b*₁:

 $\gamma p \to b_1^0 p \to \omega \pi^0 p$ $\gamma p \to b_1^- \Delta^{++} \to \omega \pi^- \Delta^{++}$

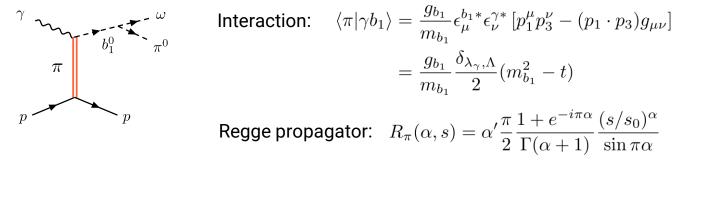


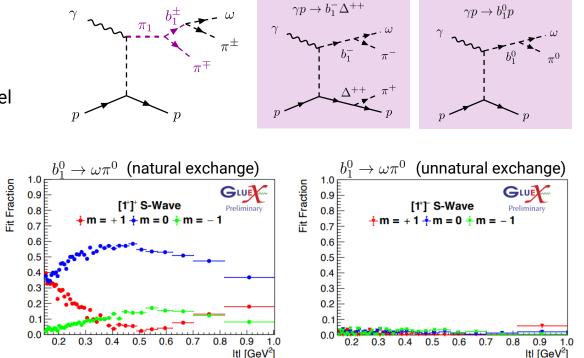
Photoproduction of $b_1(1235)$

- Lattice QCD calculations predicts the dominant $\pi_1(1600)$ decay channel be the $b_1\pi(\rightarrow 5\pi)$.
- First step is to understand the b_1 production and decay to $\omega \pi$.
- GlueX can access charged and neutral b_1 :

 $\gamma p \to b_1^0 p \to \omega \pi^0 p$ $\gamma p \to b_1^- \Delta^{++} \to \omega \pi^- \Delta^{++}$

• Size of pion exchange consistent with preliminary GlueX data.

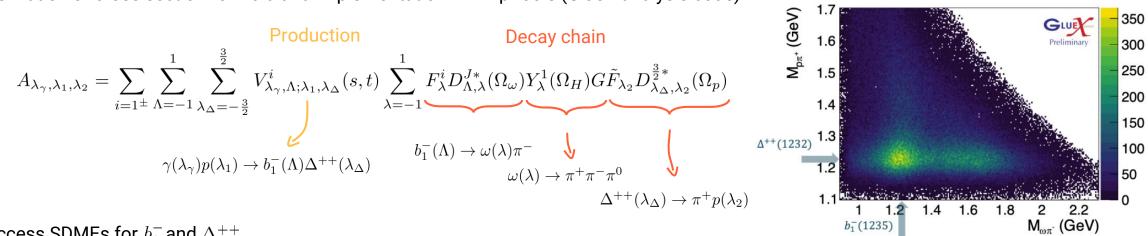




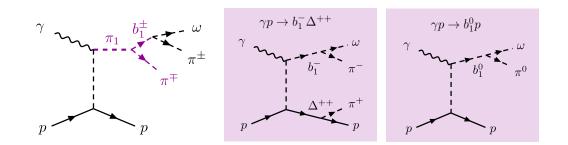
- Lattice QCD calculations predicts the dominant $\pi_1(1600)$ decay channel be the $b_1\pi(\rightarrow 5\pi)$.
- First step is to understand the b_1 production and decay to $\omega \pi$.
- GlueX can access charged and neutral *b*₁:

 $\gamma p \to b_1^0 p \to \omega \pi^0 p$ $\gamma p \to b_1^- \Delta^{++} \to \omega \pi^- \Delta^{++}$

• Derivation of cross section formula and implementation in AmpTools (GlueX analysis code).



• Access SDMEs for b_1^- and Δ^{++}



SDMEs of the Δ^{++}

- Spin density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in $\gamma p \rightarrow \pi^{-} \Delta^{++}$ comparing with experimental data from GlueX.
- Three angles required to describe intensity: polarization Φ and Δ^{++} decay $\,\theta,\,\phi$
- 9 independent SDMEs
- JPAC previous model reproduces cross section but not SDMEs.

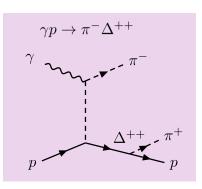
[J.Nys et al. (JPAC), Phys.Lett.B 779 (2018) 77-81]

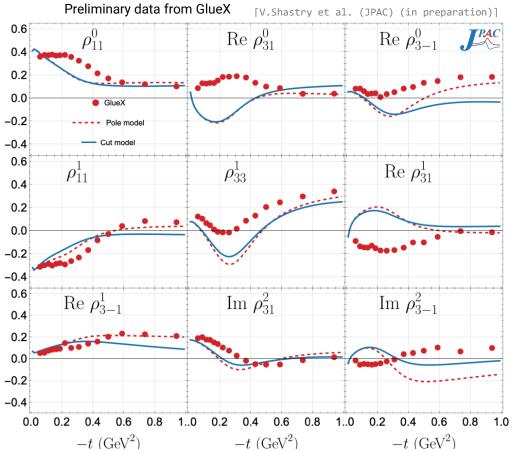
$$A_{\mu_{\gamma}\mu_{1}\mu_{2}}(s,t) = \beta_{\mu_{\gamma}}(t)\beta_{\mu_{1}\mu_{2}}(t)\mathcal{P}_{\mathrm{R}}(s,t)$$

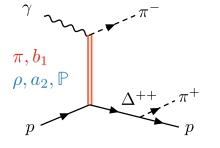
$$\mathcal{P}_R = \frac{\pi \alpha'_R}{2} \frac{\tau_R + e^{-i\pi\alpha_R(t)}}{\sin\pi\alpha_R(t)} \left(\frac{s}{s_0}\right)^{\alpha_R(t)}$$

+ Poor Man's Absorption for pion exchange

[P.K.Williams, *Phys.Rev.D* 1 (1970) 1312]







SDMEs of the Δ^{++}

- Spin density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in $\gamma p \rightarrow \pi^{-} \Delta^{++}$ comparing with experimental data from GlueX.
- Three angles required to describe intensity: polarization Φ and Δ^{++} decay $heta, \phi$
- 9 independent SDMEs
- JPAC previous model reproduces cross section but not SDMEs.

[J.Nys et al. (JPAC), Phys.Lett.B 779 (2018) 77-81]

$$\gamma \qquad -\pi^{-}$$

$$\pi, b_{1}$$

$$\rho, a_{2}, \mathbb{P}$$

$$\Delta^{++}, \pi^{+}$$

$$p \qquad p$$

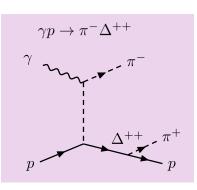
 $A_{\mu_{\gamma}\mu_{1}\mu_{2}}(s,t) = \beta_{\mu_{\gamma}}(t)\beta_{\mu_{1}\mu_{2}}(t)\mathcal{P}_{\mathbf{R}}(s,t)$

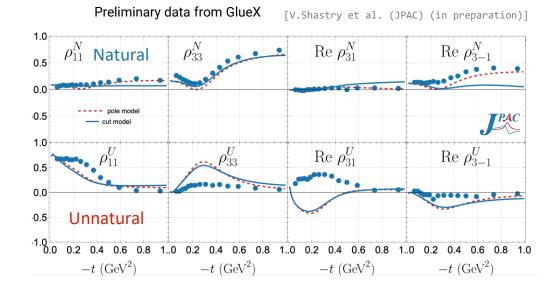
 $\mathcal{P}_R = \frac{\pi \alpha'_R}{2} \frac{\tau_R + e^{-i\pi\alpha_R(t)}}{\sin\pi\alpha_R(t)} \left(\frac{s}{s_0}\right)^{\alpha_R(t)}$

+ Poor Man's Absorption for pion exchange

[P.K.Williams, *Phys.Rev.D* 1 (1970) 1312]

• Better agreement with natural exchange.





SDMEs of the Δ^{++}

- Spin density matrix elements (SDMEs) of the $\Delta^{++}(1232)$ in $\gamma p \rightarrow \pi^{-} \Delta^{++}$ comparing with experimental data from GlueX.
- Three angles required to describe intensity: polarization Φ and Δ^{++} decay $\,\theta,\,\phi$
- 9 independent SDMEs
- JPAC previous model reproduces cross section but not SDMEs.

[J.Nys et al. (JPAC), *Phys.Lett.B* 779 (2018) 77-81]

$$\gamma \qquad -\pi^{-}$$

$$\pi, b_{1}$$

$$\rho, a_{2}, \mathbb{P}$$

$$\Delta^{++}, \pi^{+}$$

$$p \qquad p$$

$$A_{\mu_{\gamma}\mu_{1}\mu_{2}}(s,t) = \beta_{\mu_{\gamma}}(t)\beta_{\mu_{1}\mu_{2}}(t)\mathcal{P}_{\mathbf{R}}(s,t)$$

$$\mathcal{P}_R = \frac{\pi \alpha'_R}{2} \frac{\tau_R + e^{-i\pi\alpha_R(t)}}{\sin\pi\alpha_R(t)} \left(\frac{s}{s_0}\right)^{\alpha_R(t)}$$

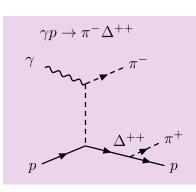
+ Poor Man's Absorption for pion exchange

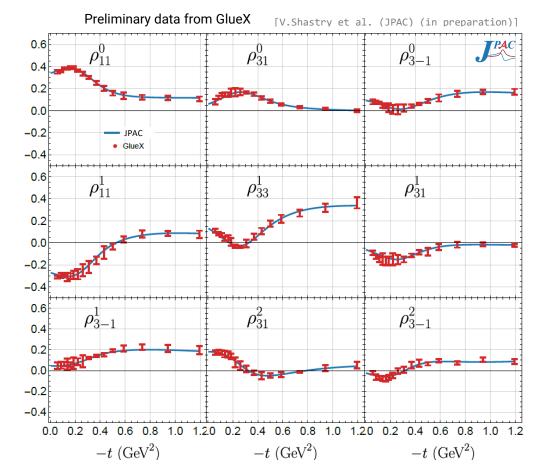
[P.K.Williams, *Phys.Rev.D* 1 (1970) 1312]

- Better agreement with natural exchange.
- Polynomial can fit the data.

$$V_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}(t) = (z_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}^{2}t^{2} + z_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}^{1}t + z_{\lambda_{\gamma},\lambda_{1},\lambda_{\Delta}}^{0})e^{\alpha}$$

• Work in progress to identify the Physics.





CONCLUSIONS

- A precise comprehension of the production mechanisms is crucial for the light hybrid meson searches.
- At high energies, meson photoproduction reactions are dominated by the exchange of Regge trajectories, in particular, the pion trajectory plays a major role at low momentum transfer.
- How do we reggeized the pion appropriately?
 - Current conservation requires the nucleon Born terms (gauge invariance).
 - It was not clear how to add *t* and *s*-channel consistently without double counting: *t*-channel and *s*-channel partial wave series should independently represent the full amplitude.
 - Examination of the analytical J dependence emerging from the contraction of the vertices coupling $\gamma \pi$ and NN to $J^P = (\text{even})^-$ reveals that it is analytical at J = 0 and physically contains part of the (s-channel, or u-channel depending on charge) nucleon exchange.

What's next?

- Revisit the pion exchange in $\gamma p \rightarrow \pi^- \Delta^{++}$ and understand Δ^{++} SDMEs.
- Extension of the formalism to natural parity exchanges.
- Amplitudes for photoproduction of b_1 , a_2 , π_1 with proton and Δ^{++} recoils.
- Close collaboration with GlueX to provide them with theory support.

